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Summary. The algebraic structures of the configuration interaction, normal cou- 
pled cluster, and extended coupled cluster methods are reviewed and developed. 
These methods are pointed out to perform a mapping of the quantum mechani- 
cal problem into a classical phase space, where in each case the classical 
canonical coordinates have characteristically different cluster and locality proper- 
ties. Special focus is given to the extended coupled cluster method (ECCM), 
which alone is based on an entirely additively separable coordinate system. The 
general principles are formulated for systems with both bosonic and fermionic 
degrees of freedom, allowing both commutative and anticommutative (Grass- 
mann) cluster amplitudes. The properties of the classical images are briefly 
discussed. It is proposed that phase spaces may exist which are fixed points of 
quantization. 
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1. Introduction 

The configuration interaction, normal coupled cluster, and extended coupled cluster 
methods (CIM, NCCM, and ECCM, respectively) are parametrizations of the 
many-body wave function which share the following important property. The ket 
and bra trial states are given in terms of two mutually commuting sets of 
operator amplitudes (.~, X) that belong to the subalgebras of annihilation and 
creation operators, respectively. These independent cluster (IC) methods can be 
formulated variationally using a quantum mechanical action principle whereby 
an expectation value functional for the properties is introduced. The dynamics of 
the IC amplitudes are obtained from equations formally identical to classical 

* Based on a talk given at the Workshop on Coupled-Cluster Theory at the Interface of Atomic 
Physics and Quantum Chemistry, Harvard-Smithsonian Institute for Theoretical Atomic and Molecu- 
lar Physics, Cambridge, MA, August 7 11, 1990 
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canonical equations of motion. The methods have their roots in nuclear physics, 
quantum chemistry and condensed matter physics, where they have been widely 
used to quantitatively and accurately describe various many-body properties (for 
reviews see e.g. [1-6]). 

The IC parametrizations perform a "supercoherent" mapping of the Hilbert 
space into a "target" classical phase space, W ~ c o h ( N  ~e) ~scoh( ; /g )=F ~. 
Here coh(~ jr) is the subset of the coherent states of an enlarged "bosonized" 
and "fermionized" Hilbert space Ng into which JC is embedded, and 
scoh(~Ug) = F ~v is the mapped classical phase space. This is a valid description for 
each IC method. Differences show up in the qualitative nature of the amplitudes, 
in particular in their locality (quasilocality or multilocality) properties, which are 
closely connected with the extensivity or separability features of the methods or 
their approximants. In CIM and IC amplitudes (X, X) = (if, F) are multiplica- 
tively separable; in NCCM the amplitudes are (.~, X ) =  (~, S), of which S is 
additively and g multiplicatively separable; in ECCM both of the amplitudes 
(X, X) = (Z, S) are additively separable. Multiplicative or additive separability [7] 
are terms which are used to describe how a particular function decomposes when 
the system divides into uncorrelated subsystems for example due to a large 
distance between them. In approximative calculations the associated extensivity 
(size-extensivity) or  size-consistency [8-10] features are usually not automatically 
guaranteed. 

The present article concentrates mostly on the general formulation of the 
ECCM. The expectation value functional is introduced in terms of bosonic 
commutative and fermionic anticommutative (Grassmann) cluster amplitudes. 
The latter facilitate the algebraic treatment of fermionic many-body systems and 
their fermionic excitations. Much of the technical structure of the IC methods 
and the ECCM are explained in Sects. 2 -4  and in Appendices A-C.  Excited 
states and transition amplitudes are treated in Sect. 5. Equations of motion and 
the limit of small oscillations around a stationary point are considered in the 
next two sections. It is shown that e.g. (anti)commutators of operators are 
mapped into classical (graded) Poisson brackets. Section 8 briefly discusses the 
possible "bugs" of the CC methods, i.e. mathematical subtleties such as conver- 
gence problems and difficulties in formulating practical truncation schemes in 
various applications. Section 9 is dedicated to a discussion of the classical 
mappings induced by the IC methods. Section 10 contains a few concluding 
remarks and raises the question whether the phase space description in terms of 
additively separable coordinates can be elevated to a more fundamental status of 
a new physical principle, by suggesting the possibility of fixed points of quantiza- 
tion. 

The notation in the present article differs to some extent from the earlier 
conventions and is largely in accordance with a forthcoming paper written with 
Bishop [ 11]. 

2. Basic operator algebra 

It is assumed that all states of the Hilbert space ~ can be generated from the 
cyclic vector(s) 10) or (01 by operations with the elements of the algebras cg+ or 
~ -  of creation or annihilation operators, respectively. The cyclic state (reference 
or model state, "vacuum") may typically be a boson vacuum, a Slater determi- 
nant or a BCS ground state. Let the indices p, q, r . . . .  e J l  denote the single- 
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particle states and J ,  the single-particle index space. The single-particle creation 
and destruction operators are {ap t :p e J :  } and {ap :p e J :  }, respectively. They 
are assumed to obey the standard boson or fermion commutation or anticommu- 
tation rules. For a mixture of  particles, let each index p be supplied with a 
"Grassmann bit" which tells whether the single-particle operator in question is 
bosonic or fermionic. The graded commutation rules are standard: 

[ap, aq] =--- apaq - -  ?lp,qaqap = O, 
(1) [ap, atq] = apatq -- qp,qatqap = 6(p, q), 

with the sign factors obeying the convention ~/p,q = - 1 for pq = FF and q = 1 for 
the other cases BB, BF, FB. The sign factors are conveniently represented in the 
form: 

r~p,q ~. ( - -  ] ) P p P q ,  (2) 

where Pp = 0 (mod 2) for bosonic p and Pp = I (rood 2) for ferrnionic p. The 
fermionic parity is defined as: 

1, p = B ,  
q P - q P ' P = ( - I ) P ~ =  - I ,  p = F .  (3) 

Continuous field theories necessitate continuous single-particle indices, in which 
case the Kronecker delta is replaced by the Dirac delta. Trivial modifications 
would also appear elsewhere in the subsequent discussion. 

Multiparticle or configuration operators are generated by the single-particle 
operators. They span the algebras if+ and if- .  It is convenient to choose them 
normalized, 

c,* 

The arrow denotes a definite 
The exponents mp can be {0, 
or bosonic. Normalization is 

F 
= l~ [ ~  ("p, I "  (4) 

p~ L x/ rnp X J 

prescribed ordering of the factors in the product. 
1 } or {0, 1, 2 , . . .  }, depending on if p is fermionic 
therefore: 

<0[Gc 10> = J). (5) 

The configuration indices {L J, K , . . .  } are elements in the configuration index 
space J ,  and the set {C/* IO>:I e J }  forms an orthonormal basis for W. Using 
this basis it will be useful to express the identity operator as the resolution: 

I°P = E C~[0>(0[G = 10>(0[ + E' Cts[0>(0[G, 
Y J 

(6) 

where the primed summation excludes the null configuration. 
The parity factors q are defined for arbitrary configuration operators by: 

~ I  = ( - -  1 )  p I  = ( - -  1) ~p m p ( I ) P p  = ( - -  1 ) N F ,  (7) 

where NF is the number of fermions in configuration L Indeed, qAm can be 
similarly generalized for arbitrary operators A, B . . . . .  

Corresponding to each configuration index a pair of numbers I ~ (Xz, xz)  
are defined such that for bosonic I (i.e. t/I = 1) the (~Tz, xl)  are complex numbers, 
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but for fermionic I (i.e. 111 = - -  1) the (Xl, XI)  are c o m p l e x  G r a s s m a n n  n u m b e r s  (to 
be more precise, they are generally even or odd elements of a complex Grass- 
mann algebra). Their graded commutation rules with each other and with the 
configuration operators are defined in accordance with the usual convention (see 
e.g. [12, 13]) as follows: 

[Xl ,  X j  ] ~ X l X  J - -  ?]I, j X J X I  = O, 

[ x , ,  ~ j ]  = [~, ,  Jzj] = 0, (8)  

[ x , ,  G ]  = [x l ,  c ~ ]  = [~ , ,  G ]  = [~ , ,  c*~] = o.  

By this choice, expressions of the form: 

Z C+,x,, Z ~,,c, 
I I 

have an even Grassmann partity, i.e. they commute with all Grassmann numbers. 
The restriction to such cases follows from the convention adopted here that the 
Hamiltonian is always assumed to be Grassmann-even. Usually the many-body 
Hamiltonian contains only products of an even number of fermionic configura- 
tion operators multiplied by ordinary complex numbers, and is able to change 
fermion number only in multiples of two. However, for the purpose of calculat- 
ing odd fermionic Green functions, correlation functions or excited states, it is 
very convenient to formally break the fermionic parity of H, e.g., by adding 
source terms of the form: 

E (~pap + a~Vp). 
P 

If the coefficients v, ~ are chosen Grassmann numbers for each fermionic index p, 
the Hamiltonian still remains Grassmann-even. The IC amplitudes of the wave 
functions (to be described below) then become multinomials of {~p, Vp}. For 
most purposes it will be sufficient to expand various properties only up to at 
most second order in the Grassmann sources. 

The der ivat ives  with respect to the amplitudes ()Ts, xl) are defined to be le f t  
derivatives, following the standard convention [12, 13]. The following notations 
will be used: 

6 
- = ~T, 

6 (9) 
___ cG s . 

8 x i  6x~ 

The derivatives act to the right removing a factor from the left end of a product, 
without changes of sign. To be able to do so, the factors in a product must be 
rearranged using proper graded commutation rules. For example: 

~ y ( Y q 2 s "  " • X K )  = ~. ,"  • • XK,  

but 

~j(.~L" " " X K X j X I )  = I~K,j" " " ITL,J.~L" " " XKXI. 

The derivatives have graded commutation rules with each other similar to those 
of the amplitudes. 
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3. Independent-cluster parametrizations of the many-body wave function 

Each IC method is defined in terms of a canonically conjugate pair of operators 
(£, x): 

X = ~ C*~x, ~ ~+, 
' (lO) 

£ =  g x, c, ~ ~e -. 
I 

They parametrize the ket and bra states in characteristically different ways. The 
cases are treated separately. 

3. I. Configuration interaction method (CIM) 

The states are defined as: 

I~> = FIO> = Z C~* IO>f,, 
I (11) 

<~1-- <olP= E ~<olc,. 
I 

In  this case ()~, X) = (if, F).  
The average value functional for the energy can be written in the straight- 

forward way: 

<n> ~ <~IHIV> = Z ~<IlalJ>fJ. (12) 
zJ 

Figure 1 illuminates the average value functional and the matrix elements: 

<zl•lJ> = <01c, nc~  10>. (13) 

It turns out that the ground state amplitudes f and f a r e  both disconnected. 
Their values can be obtained by the Rayleigh-Ritz variational principle, where 
Lagrange multipliers must be used due to lack of manifest normalization: 

~ (<CelHle> F,<rel~e>)=O, 

~ff(<~P[Hl'e> ~<q'l~>) =0. 

n )  -" 

( 

q 

m ~ f  

= E 

I 

J 
Fig. 1. Schematic presentation of the average value functional and a typical matrix element in CIM 
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Let the Hamiltonian be written as: 

H= T+ V; T=~atetpap, (14) 
P 

where T is the diagonal model Hamiltonian and tp are the model single-particle 
energies. Above the order of the factors is chosen to facilitate the possibility of 
derivative operations. Then: 

(H}  =H[jz,,f] = T +  V, (15) 

where, in particular: 

T=~j'~Txfl; Tx=~mp(I)tp (16) 
I p 

is the diagonal part. The first variational conditions give the equations (notice 
that p = E0--the full ground state energy): 

T, fl + ~ = Eof~. 

Symmetric equations hold for f. Iteration of these equations leads to the 
Brillouin- Wigner perturbation theory, which has its well known drawbacks for a 
many-body system (such as non-extensive terms in the energy expansion, etc.). 

The Rayleigh-Schr6dinger perturbation theory is recovered by replacing 
V ~ V '  = V - Eo  I°p. The stationary conditions are then: 

1 c~V' 
f ,= 

(17) 

j~I= n l e V '  
T, af," 

Notice that now the energy denominators /'i are on energy shell. The equations 
can be iterated to produce a diagrammatic expansion for the amplitudes and the 
energy, see Figs. 2-3. 

The extensivity properties of these expansions are more correct. However, 
some of the interactions are now multiplicative (-E0)-insertions. It was proven 

+ +. .  + + 

f 

E 0  = - + I + [ +  
Fig. 2. CIM tree diagrams for (a).1"i, (b)~,  (c) 
energy E o 
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@ _ ... + @ 
f 

+'"+ ~J""~J .~!].t I + "" 
0111 ..... ] ]  

Fig. 3. Disconnected structure of the CIM amplitudes 

by Brandow [14] that in the expansion for energy all such diagrams cancel 
against each other which either contain (-Eo)-insertions or are disconnected, 
provided Pauli exclusion violation is allowed in the remaining fully connected 
diagrams. This is one form of the celebrated linked-cluster theorem, which 
originally was proven by Goldstone [15] using a different approach. An impor- 
tant fact is nevertheless that the theorem does not help the amplitudes f , f  to 
avoid having disconnected parts (Fig. 3). Indeed, the operators F and F are 
multiplicatively separable, as concerns their extensivity properties. 

3.2. Normal coupled cluster method (NCCM) 

The ground-state wave function of a many-body system (or a field theory) can 
be given in an exponential form [16]: 

]~> = eS]0>; S = ~,' C~iSl (18) 
I 

where S is a linked-cluster operator. This was the starting point of the exp S or 
coupled-cluster method which was developed by Coester and K/immel [17, 18]. 
The ground state energy eigenvalue problem can now be given in the form 

e-SHeS]O> = Eo[0 >. (19) 

The method introduces a similarity transformation generated by S, and one of the 
central features is that the multiple-commutator expansion: 

1 
e-SHeS = H + [H, S] + ~. [[H, S], S] + - - .  

truncates after a finite number of terms. The amplitudes st are solved from the 
equations: 

<0[Ge-SHeS]0> = Eo6(I, 0). (20) 

The structure of these equations almost trivially guarantees the linked-cluster 
theorem. Not only has the energy a connected expansion, but also the amplitudes 
sx will be given exclusively in terms of connected Goldstone diagrams. These 
features are very important for the correct separability properties in chemistry, 
and it is not a great surprise that the method was essentially independently 
introduced into quantum chemistry by (~i~ek [19] (for reviews see e.g. [20] and 
the articles in the present volume). 

The extensivity properties of the operators F and S are precisely analogous 
to those of the partition function Z = T r e x p ( - H / T )  and the free energy 
F = - -T logZ in statistical physics. 
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In the normal coupled cluster method (NCCM) [21, 22] the bra state can also 
be parametrized as follows: 

( ~ l  = (01 & - s ;  ~ = 1 + ~ '  siCi. (21) 
I 

Later it will be seen that S and ~ are canonically conjugate to each other, and 
thus (X, X) = (S, S). 

Since the normalization is now manifest, i.e. (~P]~u) = (Ol~e-SeSlO) = go = 1, 
the variational equations for the energy do not need a Lagrange multiplier. 
Using the same Hamiltonian as previously, the diagonal energy is: 

f = (OI3e-SreSlO) = g , r , s , ,  (22) 
I 

and the stationary equations become: 

~ g 1 = 0 = ~ s I =  T+0s/ 
(23) 

~H r/1 017 
es-S = o s-, = - r ,  s-Z 

The equations can be iterated to produce diagrammatic expansions for the 
amplitudes (g,, sz ). 

The average value functional has the ground form: 

( n )  = <OIg{neS} lO)M (24) 
1 

~ E "  ' " E '  gI ( IllTlJ, J. >sj. 
n = 0  J1 "In 

where the subscript ~ (for "linked") means that every S is linked to H, and the 
matrix element is: 

( I IHIJ I . . . J~  > = (OlC I [. • .[a, C~,], • • -, C~,]]0>, (25) 

and I is allowed also to be the null configuration, whence go = 1. As is readily 
seen, the function is nonlinear in the connected or additively separable ampli- 
tudes (s), but linear in the amplitudes (g), which turn out to be disconnected and 
multiplicatively separable. 

Figure 4 gives a schematic picture of the average value functional and the 
matrix element. Iteration of Eq. (23) unravels the structure of the ground-state 

I 

~ ~ Jl J2 J3 

J1 J2 J3 
Fig. 4. Schematic representation of the average value functional and a typical matrix element of an 
operator in NCCM 
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S I 
8 

b 

I / 
= ~ + . . .  + 

= 3~" + . . .  + 

I 

I m Q 

I Q I 

-+Z+ 
C 
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Fig. 5a -c .  Diagrammatic 
NCCM tree structure of (a) the 
connected (additively separable) 
amplitudes sl, (b) the discon- 
nected (multiplicatively separa- 
ble) amplitudes g/, and (c) the 
energy. Diagrams for energy are 
connected, and they have a 
unique uppermost vertex. In all 
cases branching occurs only 
downwards (to the past) 

amplitudes si and s~ and the energy, displayed also schematically in Fig. 5. 
Although the exact amplitudes gi are in principle decomposable into multiplica- 
tively separable factors (this feature is not explicitly obvious from the way they 
are drawn in Fig. 5), the extensivity or separability properties may typically be 
obscured in approximative calculations. 

Both the NCCM and the ECCM are fully consistent with the Hellmann- 
Feynman principle as long as the equations are derived from the variational 
conditions. Indeed, the introduction of the bra state makes explicit the rather 
implicit rules derived for the first time within the coupled cluster approach by 
Monkhorst [23] for the purpose of implementing the Hellmann-Feynman 
principle. The principle has been applied to practical numerical computations 
only quite recently~( see e.g. by Bartlett et al. [24], whose function A is related to 
the present ~' by S = 1 + A). 

3.3. Extended coupled cluster method (ECCM) 

In this method [21] also the bra state is parametrized by additively separable 
connected amplitudes. To be able to do so, one must understand the precise 
diagrammatic structure of the amplitudes ~7 z. Assuming the exact ket and bra 
ground states to be known and given in terms of S and S t, it follows by 
definition that: 

(OleSte s 
( O l g -  ( O[eS, eS[O ) . (26) 

A careful consideration of the structure of (O[eSte s, where both S and S t are 
linked-cluster operators, shows that it can be expressed as the product of the 
multiplicatively separable factor (OleSteSlO), which encompasses all the closed 
diagrams (and cancels the denominator above), and another multiplicatively 
separable factor (Ole s', where S" ~ cg- is a connected annihilation operator. The 
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average value functional is now: 

( H ) = ( OleS"e-SHeS]O ). (27) 

In effect, the method introduces a double similarity transformation: 

lq = eS"e-SHeSe-s". (28) 

The ground state eigenvalue equations for the ket and bra states are then: 

/~[0> = Eo[0>; (01/~ = E0(0 I. (29) 

Section 6 makes it obvious that in ECCM the canonically conjugate pair of 
operators are (.Y, X) = (27, X), where: 

Writing: 

27- S" = Z '  ~ G  , 
i (30) 

S]O) =_ QeS,'S]O); Q = l o p  __ 10)<0l. 

27 = •'  C*/o" z (31) 
I 

the connections between sz and ~1 are: 

~I " ~  (OlCieS"S[O) = (0]gfzS]0),  
(32) 

sz = (0]C~e-t~[0) = sz[& a]. 

It is again straightforward to show that the diagonal part of the Hamiltonian 
becomes: 

T - (OleS"e-STeS]O) = ~ '  #zT:z .  (33) 
1 

The variational stationary conditions can then be used to derive the equations: 

0H 1 817[~, o] 
~ a z - 0 = > ° "  z - - T z  ~ z  ' 

~/~ ~/z 81716, a] (34) 
&r z - O ~ a I = - ~  ~az 

These equations can be solved iteratively to reveal the diagrammatic structure of 
the amplitudes. The general form of the expectation functional is: 

( H >  = (Ol{e~{HeZ}se}e.~lO> 
(35) 

1 E , E , -  . . .  : m~=O rt~O~'~'[ {/1} {Jl} O ' l l ' ' ' ~ ' m  (II'''ImlI~lJl'''Jn)a:" ¢ r j , .  

Here the new subscript @ ~  (for "double linking") means that each 27 must be 
linked either to H or, in the absence of such a link, to at least two different 27. 
The expression is nonlinear with respect to both 8 and a, which are connected, 
additively separable amplitudes. The double linking property of  the average 
value is proven carefully in Appendix A. An explicit algebraic expression for the 
matrix element in the bosonic case was derived in [22, Appendix B]. Using the 
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J1 J2 J3 
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Fig. 6. Schematic illustration of  the expectation value functional and the structure of  the matrix 
element in ECCM. There are definite restrictions on how the single-particle lines can be grouped into 
configurations (see text) 

a 

CJ I 

= ~ + .. .  + + . . .  

b 

E0  = m +  Z+ ' " +  ~ +  

C 
Fig. 7a-c .  ECCM tree structure of  ( a ) - (b )  the amplitudes o- I and 61, (e) the energy. All contribu- 
tions are connected. Branching of  the trees occurs in both directions 

~ notation the result is: 

< I , . . .  I m l I ~ l J l  " " " Y n )  = <0l{Czm • •. C i , [ "  " [ O ,  C• ,] ,  . . . , C~s,J}~el0> 

= (01{Clm • - • C I , [ H C t s , . . .  Cts.lz}~_~10). (36) 

It is schematically illustrated in Fig. 6 together with the average value of the 
operator. The iterated E C C M  t r e e  structures of the amplitudes (6x, tr x) and the 
energy are illustrated in Fig. 7. In the present case the tree diagram expansion for 
the energy is not obvious; it has to be more carefully justified using the 
topological properties of tree diagrams [21]. 
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Fig. 8. a Goldstone diagrams summed by 0t. Every line ~ ~ I is connected to all other l k ~ I via any 
route within U + L. b Example of  diagrams contributing to 62 

Fig. 9. a Goldstone diagrams for o- 1. Every line lj ~ I is connected to all other l k ~ I through a route 
within L. b Example of  diagrams not contributing to cr 2. Inclusion of this diagram would lead to 
overcounting 

The structure of the average value functional can be alternatively studied by 
the Bargmann space concepts using the holomorphic wave functionals, in which 
case a very useful generating functional can be introduced for the expectation 
values. This approach is briefly discussed in Appendix B. 

The amplitudes gz and t~z have simple physical interpretations. They give the 
expectation values (connected expectation values, respectively) of the creation 
operators: 

~, = ( c * , )  = ( 0 l ~ c ~  10), 

~ i :  <c,* > . . . .  = <01gc*,10> . . . .  

Notice that oz # (Cz)co,,,. Figures 8-9 give further illumination on the struc- 
tures of the basic ECCM amplitudes. 

In the limit where the Grassmann sources are zero (~ = v = 0) the odd 
amplitudes 0z, a~(t/z = - 1 )  may be regarded independent generators of the 
Grassmann algebra. The other non-connected amplitudes such as ~ , f l  are then 
higher-order elements of the Grassmann algebra. 

4. Technical details 

The addition and 
follows: 

subtraction of the configuration indices are defined as 

C*s_,,]O) = CIC~]O); Ctj+z - C*ICts, (37) 

<01G_~ - <01GcS; c,+~ - Qcs. (38) 
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Notice that by these definitions the operators C I _ j ,  Cz+j etc. are not necessarily 
normalized. The delta function is likewise generalized: 

(OICICjCtK 10) = (OICI+jCYK 10) = 6(I + J, K). (39) 

Since also <OIClC~GIo> = <01c, cL ,10>  by definition, the identity 

8(I + J, K) -- 3(1, K - J)  (40) 

holds. The addition and subtraction can be generalized to several indices. For 
example, 11 + 12 + 13 +" • • - ( ( I t  -[- 1 2 )  - - - / 3 )  - + "  ' ' • The sums are neither com- 
mutative nor associative: I1 + /2  - / 3  # Il + (/2 - / 3 )  # I 1 - I 3 + 12. For the delta 
function one obtains the chain rule: 

8 ( I + . . . + J , K + . . . + L + M ) = 8 ( I + . . . + J ~ M , K + . . .  + L ) .  (41) 

In precisely the same fashion compound indices are defined for the cluster 
amplitudes, e.g.: 

a , + j  = ( o l f l f j S [ O ) ' ~  (7i_ J = (OICIC]ZIo  >. (42) 

Clearly a z + j = ql ,  j G  j + l .  

It will be useful to define the matrix functions: 

(fill, J ~ O)j_  I ~ (01CzeZC] 10) = <0le ZC, C] 10>, 
(43) 

(DI.J ~ O-)J-,  ~- (0]C,e - rC]  10) = (0[e -~CzC~ 10). 

These are upper triangular Toeplitz matrices over the configuration index space. 
They are orthonormal, because: 

8(I, J)  = <OlCiC~ 10> = E <olC, eZC~ I0><0[CK e-~C] 10) 
K 

= 2 (£)I,K(~JK, J = 2 0 J K - I ( ~ J J - K ;  (44) 
K K 

likewise is ~Kd)I ,  KOgK, J = ~ K t b K _ Z O ) j _ K = 8 ( L J ) .  Clearly, rules such as 
eh  + j, K = COZ, K_ J = O)K_ j _  I = O)K_(Z + j ) involving compound indices are also effec- 
tive. 

Part ia l  derivatives of functions of (~i, aI )  are defined in accordance with: 

8fie, ~1 = E', 8~, ?T, + 8~1 . 

Since the average value functional in ECCM is, however, given explicitly in terms 
of the pair (s ' ,  s), rules must be established for combined derivatives. Thus, for 
f [~[s ' l ,  a[s ' ,  s]]: 

as 
 S;is ' 

(45) 
~, , ,  _ ,  of 

G 
It is not possible here to go into great detail; the treatment of the ECCM algebra 
largely parallels that in [22], but with Grassmann amplitudes allowed. 

Among the most important results are the algebraic expressions for 
various matrix elements of the operators transformed by the double similarity 
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transformation. For example: 

<01c,~10> - <OlCtere-SAeSlO> = (0r~i) + ~ '  a,+s(Oj A); (46) 
Y 

(0IACz t 10> -= <0[eZe -SAeSe-ZC~ I 0> 

= qzr/t,A (t3, x)  + rb, A Z '  L~aLs(a: ~) + q,,A Z '  Z '  Za,,scrs+ K(0K'4)" (47) 
J J K 

In the latter equation the function Za is: 

~i,J =- • rl,,KCOM + KChMa&K,J = <0l{e~C*z C*s }~.~ 10>. (48) 
KM 

The parities are 5ezj = qz, s &as,! and t/&. s = ~hqs. The subscript ~£,e now denotes 
restriction to such terms where each f is linked to both Cz* and C*s. This can be 
verified by carefully inspecting the algebraic definition of ~e [22]. A slightly more 
complicated expression is obtained for the general matrix element: 

<o I c~2c~ lo> = ,  y.A a(x, r ) ~  + ,x,7 Y,7,..A (0 y_ x~) + Z '  ~ Y,~ ze~..(a~.~) 
I 

I J 

+ nrnr, A ~ '  Crx+,(a, arA). (49) 
I 

Here appears a new function: 

~ , , x  _ E ",,,¢O~X,M+K~M,,~K,, = <olc~{e~CICS }~[o>, (50) 
K,M 

where the double linking requirement obviously does not concern the configura- 
tion X of the operator Cx. By using the Wick theorem (to be given below) it is 
possible to express the functions &ezx in terms of the 5¢zs: 

~ , x  = ~, tlz, K 6(X, K + M )  ~'1_ M,~- K. 
K,M 

The expectation of product of two operators is easily obtained from: 

<AB> - <'PIABIV> = E <012C,* Io><olc,~lo>, 
I 

upon which point we can use Eqs. (46-47) to derive the result: 

<AB> = A • B =-- A-B + y "  ~ '  [(O,A)zI, j(OjB) + (OtA)zI, j(O:B) 
I J 

+ (arA)zzAGB) + (ar;~)zu(ajB)]. (5 i) 
Here the various coefficients are: 

Z I ' J = ~ ] I ~ ] I ' A [ O ' I + J - ~ 2 t ~ K G I + K ~ K ' M a M + J ]  ' K , M  

)~I,y = t'Ilrll, A [C~(I, J )  q- E '  qKal + K ~ K,j I , 
K (52) 

Z ~,J = ~] I ~ I,A q J~].l",B E t "~ I, KI~ K + J , 
K 

ZZ,.7 = ~]Zql, A ~'~ Z,S" 
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The "star product" introduced above can be applied to products of several 
factors. It is associative by definition. It should be stressed that all the algebraic 
expressions discussed in this section also have well understood diagrammatic 
interpretations. 

An important consistency relation can be derived for the average value 
functional of an operator, on the basis of the specific form of the definition in 
Eq. (27): 

(~ l,.~j ~ = ((~7(~.~,~) .ql_ ~,t  O.I + K((~KI~,7,e~) "JU ~l,J 2 t O'J + K((~K ~F ~) 
K K 

P ~7 
K L 

(53) 

This identity gives rise to recursion relations between the matrix elements of an 
operator, similar to those in Ref. [22]. 

It is often necessary to arrange products of configuration operators into 
normal order. For this purpose an algebraic formulation of the Wick theorem is 
available: 

CIC~ = ~, ZK(J,  I )C~_KCI_  K, (54) 
K 

where 

Z K ( J  , I )  = I'~K~K, II'~K,JqI, j .  (55) 

The sign factor Z can be + 1. For the bosonic algebra this formula was proven 
in Ref. [22]. The present general form is derived in Appendix C. Equation (54) 
can be iteratively used also for more complicated operator products. 

5. Excited states and transition amplitudes 

The average value functional for the energy with its low order (functional) 
derivatives plays a crucial role in the IC methods in deriving various physical 
results of interest. As an important example let us consider the excited states of 
a many-body system. The present treatment is restricted to ECCM and general- 
izes the results of Ref. [25]. 

Let the ket and bra eigenvalue equations be written as: 

]'P~ > ~ Y~lO), 
(56) 

<ol , 

where Ya • cg+ and YZ • cg-, and the double similarity transformation is used as 
defined in Eq. (28). Assume that the exact amplitudes £, S for the ground state 
have been solved. The first functional derivatives of H are then zero. Denoting 
the second functional derivatives of H calculated at the ground state by: 

~-,,s -= r/,r/jOzOSHlg.s" = r/z,j ~ ig ,  

8 ,,j =- rl s % %  Rlg .... 

= ~LJ J,1, 

(57) 
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and using Eq. (49) together with the expansions: 

C l Y l ,  
i 

i 

(58) 

the following matrix forms for the eigenvalue equations are obtained: 

0" ~ / 2 ~,' el, S + ~'  ~lK ,+K~'K,S YS = ~Y~, (59) 
J K 

~' ~ (Bj,~ + ~'  rIKaS+l~K,~)=e~.9~. (60) 

Since the Grassmann amplitudes are zero at the ground state, the eigenvalue 
equations are reducible into independent bosonic and fermionic sectors. The 
matrix elements above are nonzero only for index combinations BB or FF 
corresponding to bosonic and fermionic excitations, respectively, and they are 
made up of ordinary c-numbers in both cases. In the fermionic case the operators 
in expansions (58) are odd. The expansion coefficients "~ Y~,Yl can always be 
assumed ordinary numbers, whence the normalization conditions: 

= = 6(z  z )  (61) 
I 

may be imposed. A general ket state, mixing even and odd numbers of fermions, 
can then be conveniently written as a superposition: 

I • > = Z r 10>, 
2 

where all terms are Grassmann-even, if the coefficients q~2, are Grassmann 
numbers for those excited states that differ from the model state in fermionic 
parity. 

The results derived in this and the previous section allow also the calculation 
of the matrix elements of arbitrary operators between the exact eigenstates of the 
system. These are of particular interest for the evaluation of transition probabil- 
ities under external perturbations. Another interesting field which has yet to be 
more carefully studied is the application of ECCM to the case of degenerate 
perturbation theory, which is important in atomic and molecular physics. The 
present formulation lends itself in a natural fashion to the case where the model 
state is a closed shell system. The particles in an open shell are then added by 
suitable excitation operators Y~. 

6. Equations of motion 

The equations of motion can be derived from the quantum mechanical action 
functional: 

= fdt(tPl(i~, - H)I7 t } (62) d 
3 
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by employing the variational principle independently for the ket and bra 
states: 

6 d  
6 ( ~ 1 -  0 ~ i ~  1~) = Hi 'g) ,  

(63) 
6z~¢ i~3 ate->-0 N = 

In the various IC parametrizations the functional is always of the form: 

d=fdt{i~i&-B[~,x]}, (64) 

where the null term (I = 0), however, is excluded in the coupled cluster ap- 
proaches. For CIM the result is immediately obvious with the replacement 
(xl, xi)~(f~,f,). In the CC parametrizations the phase or size factors of the 
Schr6dinger wave functions can be dropped since they can be proven to have 
no effect on the equations of motion for the cluster amplitudes [21, 22]. In 
NCCM 

= .fat <OISe-S(iOt - -  n)eS[O> d 

This demonstrates that the canonical pair of variables is (J~, X) = (S, S). 
The derivation is slightly more involved in the case of ECCM. The tempo- 

ral part of the action can be developed as: 

do=i f dt<OleZe-SOteSlO>=i f dt<OleZ'lO>=-i f dt<Ol~eZS[O> 
=--i f dt(Ol~SlO)=i f dt(OI27~lo), 

from which it is obtained: 

d = f dt {i ~' 6idri- Jq[6, (66) 

Since the canonical variables are now ()~, X) = (27, S), the expectation functional 
of the Hamiltonian should be given in terms of these variables instead of the 
original ( S", S)-amplitudes. 

The equations of motion are obtained by requiring stationarity of ~¢ 
against small variations of the amplitudes. Thus, in all IC methods the cluster 
amplitudes obey the classical Hamiltonian canonical equations of motion: 

Off 

~H (67) 

t~xi" 

Using these equations it is possible to study the temporal behaviour of 
the expectation value of an arbitrary operator, which may depend explicitly 
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on time: 

ApZ,(t), x,(t), t] = T[  + + ~" 
I 

a~ 2 '  [o/7 o~ o/7 o27 
-- Ot i , fffCXlOXi "Z~-xxlff~xlJ" 

If the (graded) Poisson bracket is defined as: 

i{ .#,  B }  - ~ '  [qZrll, A ( O l A ) ( 0 f l ~ )  - r/l,. 4 ( 0 r A ) ( 0 1 B ) ] ,  
I 

the well known classical rule is found (s ince/7 is Grassmann-even): 

(68) 

~Ad _ =~aA + {A, B}. (69) 

This can be applied also to the canonical variables themselves, whence 
a, = { , , i , / 7 } ;  ~, = { ~ , , / 7 } .  

It is also found that the expectation values of the commutators of operators 
are mapped into Poisson brackets. Using Eqs. (51-52) one gets 

<[A, B] > - < @ I ( A B  - rtA,~BA) 17J > = ~ '  [nIqz,  A ( O , 2 ) ( a r B )  - nm,,.n~,:(O,B)(OrA)], 
1 

which is transcribed into the result: 

([A, B] > = i{A, B}. (70) 

The Poisson bracket and many other expressions would obtain a simpler 
form by introducing the right derivatives ~i which remove a factor from the right 
end of a product, in addition to the conventional left derivatives 07 = 57. Using 
this notation: 

i { ~ i , / ~ }  = Z'  [(~-,/i)(~'fl~) -- t/A,s(~-zB)(~'rA)]. 
I 

(71) 

7. Small oscillations and normal modes 

The limit of small oscillations around a stationary point reveals the eigenenergies 
and eigenfrequencies of the system, and allows to calcuate the dynamical linear 
response to small external perturbations. It is sufficient to expend the Hamilto- 
nian up to second order around the stationary point: 

R = E 0 + ~ ,  ' I " - ~ 1~ 6#,gz, j fas}  (72) 
I J  

where the coefficients are as defined in Eq. (57). The equations of motion 
linearize and can be given in the following block matrix form: 

d 

i~L,~erJ ~ ' L6ejJ 
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where the dynamical matrix is: 

[ q J ~ J , l  1 (74) J~l  J = gI, J 
" -- ~ I , J  -- ~J~l,J ffJ, IJ" 

At the ground state all Grassmann amplitudes are zero. Since the Hamiltonian 
is Grassmann-even by definition, the entries in the matrix are zero if the indices 
/, J are of opposite Grassmann parity. Therefore the calculation again reduces 
into independent bosonic and fermionic sectors. In the bosonic case: 

g g r  

where superscript T denotes the transpose of a matrix. In the fermionic sector: 

# _ ~ r ] "  (76) 

Notice that the matrices ~ and ~ are symmetric in the bosonic case and 
antisymmetric in the fermionic case. Therefore the dynamical matrix is always a 
product of a symmetric matrix with an antisymmetric one. The characteristic 
polynomial d e t ( ~ - 8 1 )  is then a function of 82, and the eigenfrequencies 
appear in pairs 

8 = +8~. (77) 

The 84 are the excitation energies: 

8~ =E~ - E 0 .  

Let the positive-frequency and negative-frequency solutions be: 

~I(82) J '  LZI(--82) J '  

respectively. These are all linearly independent. Their normalization can be 
chosen as follows: 

= ~6(8, 8') sgn(8) (78) 
~I t [Zl( -- 8)(DI(~'t) "~ ~01( -- 8)ZI(8')] O(8, 8') 

Above, upper and lower choices correspond to bosons and fermions, respec- 
tively, and 8, 8' can be any of ___~. 

Small oscillations are diagonalized into normal modes by the expansion: 

= ~ ¢~ Lzz(~a) ] + . (79) fiSi] Lz,( -89 J 
The eigenvectors are composed of ordinary c-numbers. The amplitudes #J, 
of the normal modes are c-numbers for bosonic, and Grassmann numbers 
for fermionic modes. If the above decomposition is inserted into the expansion 
of Eq. (72) of the Hamiltonian, and orthogonality relations are taken into 
account, the Hamiltonian becomes diagonalized and is, up to second order 
terms: 

H = Eo + + - . . .  (8o) 
2 



168 J.s. Arponen 

The transformation into normal coordinates is canonical, and it leaves invariant 
the form of the equations of motion: 

d 0/7 
i Z ~,~ = a~ ,  

(81) 
• d 8 / ~  

All the various IC methods can be treated in the same fashion• They differ 
typically from each other, because in CIM both the coefficients ~ and ~ are 
zero, and in NCCM ~ are zero. Thus, in CIM the dynamical matrix is block 
diagonal, and it follows that X~(8~)= (oz(-ea)= 0. The small oscillations are 
then: 

6f1(t) = ~, ~b~(t)q~/(~), 
;t 

6~(t) = ~ ~(t))O(--ca). 
2 

There appears no mixing of the positive and negative frequency solutions. 
In NCCM the dynamical matrix is lower triangular, and from the eigenvec- 

tors the components q~l(-~)  are zero. Thus: 

6sz(t) = ~ ~Ja(t)g0,(e~), 
2 

2 2 

Only the basic amplitudes ~i mix positive and negative frequencies• The ECCM 
is a general case, where mixing of the positive and negative frequencies appear in 
both canonical amplitudes ~i, az. We can understand the growing mixing in the 
coupled cluster methods by observing that an increasing number of the basic 
amplitudes are defined mixtures of both the ket and the bra state parametriza- 
tions (g in NCCM and Z, Z in ECCM). 

Let the coupled cluster amplitudes ~t, fit be given in terms of the normal 
coordinates as determined around the stationary point in the ECCM phase 
space: 

~, = ~o + y~ [ 0 ~ i ( ~ )  + ~ L ~ , ( -  ~)], 
(82) 

~ ,  = ~o + y~ [O~z,(~) + ~ z i (  - ~,)1• 
2 

If these are inserted into the Hamiltonian without truncating after second order. 
one obtains the expansion: 

2 • 22'2" "~. 22'/~ 

1 1 t 7  ' "  . + ~ Z ~a <ZlR[#/t')0,.0, + ~. ~ <l I/~/~/~ >0,"O,'0, + " "  (83) 

The higher-order terms describe nonlinear interactions between the normal 
modes. In an accompanying paper [26] this expansion is explicitly constructed 
for a simple field theoretical model. Just as the amplitudes a. # present an 
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additively separable quasilocal parametrization of the ECCM phase space, one 
can expect the normal coordinates ¢, ~ to have qualitatively similar properties, 
assuming the diagonalization can be made. In fact this is not at all an innocent 
statement. The states 2 should also incorporate the totality of nonlocal multiple 
excitations which are nevertheless expected almost always to effectively dynami- 
cally decouple from the more ordinary states, except rarely when their distant 
parts remain coherent like in an EPR experiment. It should also be emphasized 
that the stationary conditions may produce states that are topologically distorted 
in comparison with the ground state or other stationary solutions. The quasilocal 
parametrization which is a particular generalization of the mean field theory is 
expected to be able to describe such phenomena. The ECCM parametrization 
can be interpreted to perform a mapping of the global concepts of the state in a 
Hilbert space with its linear dynamics into a quasilocal phase space description in 
terms of additively separable coordinates obeying nonlinear dynamics. 

8. Bugs? 

In truncations of relatively low order the coupled cluster methods are reasonably 
straightforward to apply, and they yield results that are typically among the best 
in comparison with any other methods. Proceeding to truncation levels of higher 
order (e.g. in the SUB N hierarchy) becomes rapidly tedious due to the 
multivariate nature of the basic variables and increasing complexity of the 
equations. An important motivation for attempting to do so is the hope that the 
results might systematically indefinitely improve. Some attempts to numerically 
test convergence in very high orders in NCCM have been made with the 
anharmonic oscillator [27, 28], but the results were not fully decisive. Similar 
computations using ECCM have so far suffered from even greater numerical 
difficulties preventing firm conclusions [29], although it is more probable than 
not that there is no such convergence. It thus seems that the convergence 
properties of the CC methods in high order truncations are not yet sufficiently 
well understood. Another and even more interesting is the question of the 
behaviour of the exact CC amplitudes for various physical problems. In the 
following discussion only a few of these problems are considered. 

The additively separable linked cluster operators, such as S or 27, are mathe- 
matically complicated objects. For example, in the case of anharmonic oscillators 
the operator S is unbounded and its domain is empty, D(S) = 

IIs ,ll < = It has been pointed out [30, 11] that such operators 
nevertheless have well defined meaning which can be explored using the holo- 
morphic representations of the wave functions in the Bargrnann Hilbert space. In 
the same context it is eas E to show that the Hilbert space contains states for 
which the operators S or 2; cannot be defined, even though they can be defined 
on a dense subset of states. Furthermore, the operator S turns out to be even 
more problematic, because its series expansion in terms of gz and sl diverges. 
Analogous divergent expansions are obtained for expectation values of many 
operators, like e.g. for the operator ata, both in NCCM and ECCM. All such 
summations can however be regularized by the Bargmann space methods; the 
divergencies typically result from incorrect formal expansions of exact conver- 
gent integrals. 

The approach of using the holomorphic wave functions is described more 
thoroughly elsewhere [ 11, 26]. Since the approach is of great importance for the 
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regularization of the coupled cluster methods, Appendix B considers the holo- 
morphic representation and introduces the generating functional for the expecta- 
tion values for the general case of a mixture of bosons and fermions. The 
formalism is also applicable to field theories. 

Practical applications to realistic physical systems pose much more difficult 
problems. In the conventional coupled cluster methods a lot of practical wisdom 
exists concerning truncations, basis sets and other details in various applications, 
as demonstrated by the many articles in the present volume. The ECCM is 
largely short of comparable experience , although a considerable amount of 
analytical and numerical work has been done. One of the basic practical 
problems is the shortage of universal case-independent trunction schemes capa- 
ble of ensuring reasonable solutions. 

In approximations of increasing truncation order the number of terms or 
diagrams to be incorporated grows rapidly. Therefore it would be very useful to 
have suitable symbolic programs which automatically can perform the necessary 
algebraic manipulations. For this purpose it is important to express the algebraic 
structure of the theory in a transparent and logical form. Indeed, this is one of 
the goals of the present paper. In a sense the algebraically formulated CC 
methods "solve" the diagram classification problem which in other methods 
necessarily leads to complicated considerations of the topological properties of 
the Feynman or Goldstone diagrams. 

9. Mappings 

The IC methods transform the mathematical structure into quantum mechanical 
the structure of classical mechanics. They also perform a definite "bosonization" 
or "fermionization" of the quantum mechanical system, i.e. a mapping of the 
Hilbert space ~ into a larger space ~ r  together with a suitable mapping of the 
operator algebras. Conventionally boson expansion methods are used for 
fermionic systems for example in order to be able to describe their low-lying 
collective excited states as classical excitations using the coherent states of the 
bosonized Hilbert space. The original Hilbert space is typically mapped onto a 
subspace of the bosonized larger space, and the physical subspace is invariant 
under the bosonized image of the operator algebra (for review, see e.g. [31]). The 
new structure is again that of quantum mechanics, but with superfluous degrees 
of freedom related to the nonphysical complement in the large space. 

In the IC methods the boson expansion method (supplemented with fermion 
expansion) is in a sense carried to the logical conclusion with the result that the 
emerging framework is classical mechanics instead of another form of quantum 
theory. The discussion below is restricted to ECCM, although part of it applies 
to the other IC cases as well. Corresponding to the configuration indices of the 
Hilbert space Jeg one can define ideal canonical operators I ~ ~i, ~) obeying the 
standard commutation relations: 

[ ~ ,  ~ j ]  - ~ ,  - ~ , , ~ ,  = [~* ,  ~*~] = 0 ,  

[~1, ~ 1  = 6(/, J). (84) 

An orthonormal basis in ~ is provided by the states: 
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where [0) is a cyclic state with the property 0Q[0) = 0, V L and mi are {0, 1} or 
{0, 1, 2 , . . . }  depending whether I is a fermionic or bosonic configuration index. 

Let the generators of  the (bi)coherent states of  ~ g  be: 

Then: 

c~ = a~[5,, ,~1] = Z '  (~,*'~, - 5 : , ) .  
I 

a,eaclO ) = azeGclO), 
(86) 

(Ole-C~a, = (Ole-a~at "  

These bicoherent states can equivalently be expressed in the ECCM SUB 1 form 
t ~" t! using Sc = ~ : ~ l a t ,  Sc = ~}Stat .  Let it be required that the "boson image" 0 ~ 

of an arbitrary operator 0 satisfies the identity 

(0]e-acO%a~[0) = O[5t, a,] -= (OleZe-SOeSlO). 
This is accomplished by choosing: 

o B [ ~ I ,  a t ]  = :oB[o~I,  0~11: 

=~,m@n~.Y'y'~I...=I,,<l,...lmlOls,...J,>~,...~j,, (87) 
, • • { 6 }  ( J l }  

where the matrix elements are as defined in Sect. 3.3; hence On[5~, a t ] -  
O[St, at ]. The boson image of an operator is thus obtained by naively canoni- 
cally quantizing its average value expression. The action functional can also be 
expressed in the mapped form using the bicoherent states of  @ee. 

Taking into account the above construction a physical state can thus be 
represented in a number of  equivalent ways: 

(a) a binormalized pair of  states (~Pl and 17~5, both of finite norm and with the 
restrictions ( ~ ] 7 ' 5  = 1, ~ oc ~, in the spaces (Yg*, ovg), where ~ *  is the dual of 
~ ,  i.e. the space of linear functionals on J r ,  

(b) a bicoherent state in ~ and its dual, 

(c) a point P = (5, a) in the ECCM phase space F ~. 

This can be stated in a slightly unprecise but transparent-form as 

".~ coh( ~ ~) ~ scoh( 3~) =- Fee, (88) 

where scoh(o~ff) is the supercoherent map of 3/f and defined as synonymous to the 
classical phase space F ~e. Obviously the physical states correspond only to a 
submanifold in the space spanned by all possible values of the coordinates 
P = (5 ,  or). 

The IC treatment of the many-body problem introduces a supercoherent 
bosonization and fermionization; in the present context the terminology does not 
refer merely to fermionic coherent states or to supersymmetry. Instead, while the 
bosonic and fermionic coherent states of  a Hilbert space are used to define a 
semiclassical approximation for the system, the supercoherent states provide an 
exact and completely classicized description. Of  the various IC methods only 
ECCM fully preserves the nonlinearity of  the Hamiltonian (albeit at the loss of  
formal hermiticity in the original coordinate system). This is intimately con- 
nected with the fact that all phase space coordinates in the classicized description 
are additively separable. 
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Irrespective of the topological properties of the index space J ,  which may for 
example be discrete, the spaces above can be considered differentiable manifolds. 
Without a detailed study it is however not obvious whether in each case the 
mappings between the various representations are diffeomorphisms or even 
homeomorphisms. On the contrary, because of the rather singular nature of the 
CC parametrizations, the correspondence between W as a manifold and scoh(W) 
may generally be topologically very complicated. It is also clear that the CC 
classical map of a quantum theory does not precisely correspond to conventional 
classical mechanics in spite of the fact that both are based on the concepts of 
phase space, Hamiltonian and flow. Studies of simple examples (e.g. anharmonic 
oscillators, double well oscillators, and other simplified (0 + 1)-dimensional field 
theory models) also show that the representation of a physical state in F ~ is not 
always unique; i.e. different points in the phase space may represent the same 
state, and temporal development may sometimes require discontinuous jumps 
from one coordinate atlas to another, instead of smooth change. These peculiar 
features (which are probably highly overemphasized in the zero dimensional field 
theories mentioned above) have yet to be thoroughly understood. 

10. Concluding remarks 

The methods discussed in this paper treat a problem where the Hamiltonian and 
the Hilbert space are assumed to be known in advance, and perform a dequan- 
tization, i.e. a mapping into an equivalent classical formalism. A natural addi- 
tional ingredient to the present subject is a discussion of the quantization of an 
originally classical problem. As a result we are in the position of describing the 
whole cycle of transformations from one classical Hamiltonian formalism back 
into another such formalism. The fact that the forms of the Hamiltonians are 
potentially qualitatively similar in the ECCM case is exciting and raises interest- 
ing expectations. 

A system in classical mechanics is specified by the phase space F and the 
Hamiltonian H, which determines the flow in the phase space. The cycle of 
transformations is symbolically 

.~ cggq 
(F, H )  ~ ( ~ ,  H °p) ----* ( / " ,  H ' ) ,  (89) 

where ~ denotes quantization and cgj/dequantization, or the classical mapping 
in terms of additively separable phase space coordinates. The new classical phase 
space and the Hamiltonian are functions of the original ones: 

r' =fr(r, H) 
(90) 

H' =fH(F,  H). 

Here the functions fr,fH are in principle known. In simple cases like anharmonic 
oscillators the mappings can be understood and constructed in detail (see e.g. 
[ 11, 26]). Typically (F', H') are much more complicated than the original (F, H). 
For example, the number of phase space dimensions may drastically increase. 

If the mapped system is integrable, there exist invariant submanifolds in F' 
of lower dimensionality within which the trajectories are confined. A trivial 
example is the system of harmonic oscillators, or a system diagonalizable by a 
Bogoliubov transformation, in which cases there exists a submanifold isomorphic 
to F. Even if isolating integrals of motion do not exist, the dynamics in F' is very 
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probably highly nonergodic, and there occurs an effective compactification of the 
phase space. This is suggested by several clues, e.g. by the fact that the number 
of independent degrees of freedom in the thermodynamical sense does not 
essentially increase on quantization; the counterassumption of ergodicity would 
lead to a specific heat which is proportional to the number of coordinate 
dimensions in the phase space. As a matter of fact, since quantum mechanics is 
a linear theory, quantization of a classical system makes the mapped H'  formally 
always integrable; this is evidenced by the quadratic form of the CI energy 
functional. Some of this integrability and associated compactification may 
remain also in the CC descriptions. For example, if the original theory is a 
continuous field theory, e.g. a fiber bundle where the base space is a finite-dimen- 
sional manifold, the resulting mapped theory has the capability of being another 
fiber bundle, although with a more complicated fiber. This is a consequence of 
the additive separability of the ECCM coordinate system, which allows the 
linked-cluster many-particle amplitudes to be given as functions of only one 
position and a set of internal degrees of freedom which must be intricately 
restricted due to the couplings with other cluster amplitudes and overall normal- 
izability of the many-body wave function. 

The previous discussion suggests that it may be possible to find nontrivial 
systems which are fixed points of the transformation and satisfy 

r *  ~fr(r*, H*) 
H* ~f , ( r* ,  n*),  (91) 

either literally or in the sense of invariant submanifolds. The conditions can be 
stated also in a compact form by requiring the identity 

H[q~] ~ H[ • q~], (92) 

where H[~o] is the original Hamiltonian, ~o designates the set (6, a) of canonical 
coordinates, and H [ .  ~o] is the quantized Hamiltonian, obtained from H by 
replacing all products of ~o by the star products as defined by Eq. (51). The 
suggested isomorphy between the classical and the quantized phase space raises 
deep topological problems with regard to the structure of the index space J and 
its transforms under canonical transformations. 

The possible solution corresponds to a system which suffers no change under 
quantization. A fixed point, or a self-quantized system, if it existed, would be a 
very special system. Calculation of its properties could be done using at will 
either classical mechanics or quantum mechanics. In the latter case, diagram 
expansions (Feynman, Goldstone) in perturbation theory are exact already at the 
tree level. The structure of the phase (or Hilbert) space would guarantee that all 
such diagrams cancel against each other that have loops. If the solution is a fiber 
bundle theory, it must be free of gauge anomalies, and the symmetries of the 
classical field theory are carried unchanged to the quantized case. This is clear 
because the contributions to anomalies from loops must precisely cancel. Indeed, 
the present coupled cluster approach may offer useful construction principles for 
such particular anomaly-free theories. 

In conclusion, while the principal motivation underlying the study of the 
coupled cluster methods has been in developing practical approximation hier- 
archies intended for computations of high accuracy, the present paper suggests 
that very exciting possibilities may exist for their application into problems of 
fundamental kind. 
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Appendix A. Proof  of  the double-linking structure 
of  the E C C M  expectation functional 

The starting point is the NCCM representation for the average value as given in 
Eqs. (24-25). If the amplitudes st are expressed in terms of the ECCM 
amplitudes, using Eqs. (32), 

S I ~ E  t - O,) L j O ' j  , 

J 

the average value is cast into the form 

<o>=~ 1 ~ ' ~  <01e~[ .. .[O, C~,],-.., C~]10> 
• {J} {K} 

× (~m,jaj,)' ' '((OK,,Slaj1). (A1) 

Consider first the summation with respect to K,. Introducing the abbrevia- 
tion 

R = [ . . .  [0, C~ , ] , . . . ,  C*x,_l] 

and letting for simplicity the dummy index be K, = L one obtains 

Sum. ~ E <OleZ[ R, = E <OleZRCfL IO><OlCLe-~C*J. I 0> 
L L 

n - I  

- E qL,o [[ ~IL,Kj" <OleZe*LRlO><OlCLe-~C*s, 10>. 
L j = l  

Let the following notation be introduced: 

(A2) 

R ' =  R - E c*~ <oICLRIO>. 
L 

It is readily found that if R = Y~, y j  r,,jc*, cj, then R' = Ez EJ r,,jCfz Cs. That is, 
R' is otherwise the same as R, but the purely creative operator terms are ignored. 
Thus, the operator R' must contain absorption in all its terms, and, for example, 
R'I0> -- 0. Using this notation and the closure in the first term of Eq. (A2), and 
inserting the resolution of identity between Cfz and R in the second term, one 
finds 

Sum, = (OleZR'e-ZCfj, 10> 
= < O l { e S R ' } z C S .  [0>. (A3) 

sense that each Z in the Here the subscript ~ means in the usual NCCM 
exponent must be linked to the operator R'. 

From this equation the following conclusions naturally emerge: 

1. From aj, at least one line is connected directly to the operator O. Proof: Since 
R' comprises of those terms of [ . . ,  [O, C~] , -  • •, CtK,_I] that contain at least 
one annihilation operator, and the annihilation operators can originate only 
from O, the statement is obvious. 

2. Each line of as, is connected 

2.1. either to the operator O (obvious possibility, see above) 
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2.2. or, if not, to such an operator 27 from which there must be a connection 

2.2.1. either to the operator O 

2.2.2. or, if not, to at least one other amplitude o-sc 

P r o o f  o f  2.2: The last line of Eq. (A3) shows that if a line from Ctj, is not 
absorbed by R', it must be absorbed by a 27 from which a connection descends 
to R'. This connection goes either into O (which corresponds to case 2.2.!) or 
into one of the operators Ctxt, l = 1 , . . . ,  n - 1. In the latter case the connection 
propagates eventually into a o-st, because each Kt ~ Jl, if oSxL.g~ # 0. This com- 
pletes the proof. 

Because Eq. (A1) is symmetric with respect to permutations of {o-st} with 
appropriate sign factors, the above construction can be repeated for every index 
Jr. One of the conclusions is that any term where a line from o-st is swallowed by 
the factor e x p ( -  27) in eSxt.s, is cancelled against other similar contraction terms, 
leaving only such terms where al l  lines of the {as~} propagate into either O or the 
factor e z in front of Eq. (AI). The ECCM matrix element 

( I ,  . .  . I~ lOIJ~ . . . J . >  

= Z <01c, m • G , [  [o, c L ] , -  - . ,  
{Kl} 

• (qS2,J1 t l S z , K 1 ) ( l ~ l J 3 , S 2 t l J 3 , J 1  ~ l J 3 , K 2 t I J 3 , K l )  " " " ( t l J n , S n  - 1  " " " t l S n , J 1  t l J n , K n  - 1  

therefore obtains the form given in Eq. (36) of the main text. 

" " " qJ . ,K,)  

Appendix B. Generating functional and holomorphic representation 

This derivation extends the works [30, 11] to the general case of a mixture of 
bosons and fermions. In the holomorphic representation the canonical operators 
are represented by 

a~ ~ z v 

ap ~ #zp = O--~p 

where zp is an ordinary complex variable for bosonic index, and otherwise a 
complex Grassmann variable, and 0~, is the left derivative. They satisfy the 
canonical graded commutation rules. In the following operators are denoted by 
capital letters, and their holomorphic or configuration-index representations by 
lower-case letters. The ket and bra states will be represented by the holomorphic 
functionals f [ z ]  and )r[z'] where eventually Yo = 0z . If applied to continuous field 
theory, z ( x )  is a complex- and possibly Gra~ssma~m-valued function, and 6/~Sz(x) 
the functional derivative. In the latter case, the information on the particle 
species and other internal degrees of freedom may be thought to be incorporated 
in the argument x and in the volume element dx ,  although additional indices 
would improve clarity. 

The expectation value of an operator O[a t, a] is, assuming normalization, 

( 0 >  = <O[f[a]O[a ~, a ] f [a t ] [O> =jZ[Oz]O[Z, O~]f[Z]lz=O. (B1) 
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The connection to the configuration notation of Sect. 3 can be specified more 
precisely as 

r ~ f[z] = ~ C*~ [z]fz = ~ I-I (Zp,)f[m], (B2) 
I {mp} p~ 

where the configuration indices I are identified with the sets of exponents {mp }, 
but normalization convention is slightly altered. The scalar product is then 
£[Glf[z]lz=o=Y,{,..ff[m]f[m] I-b(m~!). The arrow notation above denotes a 
prescribed ordering of  the factors. Similar representations are used also for the 
operators S, X, S and r .  

An exponential generating functional for normal ordered averages can be 
introduced as: 

A[~, u] -- (e<a"*>e <u'>) = (e<aZ>e<~a=>), (B3) 

where the bracket notation denotes the summation (Sz)=~_,papZp, or the 
integration ( tTz)= ~ dxa(x)z(x), if the formalism is applied to continuous field 
theory. The Grassmann parity of Up and tTp is determined by the index p. Thus 
the exponents are Grassmann-even. If  an operator O is given in normal order, 
O[a*, a] = :O[a*, a]:, its average value can be calculated as follows: 

For example: 

( O[a*, a] ) = 0[~ ,  3,]A[~, u] ]a =, = o. (B4) 

<p]-I (a~p rap) ~qH (aqq) > = J'[c~] p-,H (z>) ~-qH (8'~q)f[z] z = o 

= P~H (Ogtp) mp ~qH (SUq)nqA[ffl' b/] fi =u=O' (B5) 

where the oppositely directed arrows denote opposite orderings in the products. 
The operators F, iV, S etc. are Grassmann-even. Therefore, using the facts 

that: 

8~pe <~> = e<aZ>(G " + %~p) 
(B6) 

e<"~Z>Zp = (Zp + Up)e <"oz>, 

the CIM expectation values are generated from: 

A[t/, ul =/[Sz + q~ f [ z  + ullz=o. (B7) 

This can be immediately translated into the CC methods: 

A[ft, u] = ~[0 z + ~l~e -sH +4z+"1[~= o, (B8) 

where ~[~ = exp ff[~. 
Following the analysis of Refs. [30, 11] the coupled-cluster function s[z] is 

represented by the analytic continuation of a functional Fourier transformation: 

4zl  = f   g[el(e - 1), (B9) 

where ~ = l ip  d~p. The Grassmann parity of ~p is determined by the index p, 
and the integral over Grassmann variables is defined in the standard fashion. For 
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field theory ~ ( x )  is the volume element in the function space• The product 
~ g [ ~ ]  is Grassmann-even. In fact, both factors can be separately assumed even 
by considering only cases where the number of  fermionic single-particle indices 

~-in J j  is even. The existence of  the above Fourier transformation has been 
demonstrated for the case of  anharmonic oscillators• Using Eqs. (B6) and (B9) 
the function a[z] can be expressed as 

~[z]  = ~[~z]S[Z] - ~[~z]S[~] I~ = o 
(BIO) t" 

= | ~ , [ ~ ] ( e  <=¢> - 1), 
J 

where 

7[~] = g[~lg[~]. (B11) 

For the anharmonic oscillator and comparable models the functions g and 7 turn 
out to be generalized functions, which are singular at the origin (¢ = 0). In the 
case of  field theories it is expected that they are generalized functionals. 

The usual configuration representations sl, ai for the operators S, S are 
obtained as moments of the distributions g[~] and 7[~], respectively, according to 
the generic rule 

The ECCM generating functional for the general case is obtained using Eqs. 
(B8-B11) with the result, written fully to emphasize the dependence of A on the 
state functionals 5 and 7, 

A[5, u; 5, y] = ~ ~¢ly[¢~](e(U¢l~- 1 ) . . .  ~¢'7[¢'](e (~"~-  1) 
n = O  

• exp{5[@ + ~ 1 + . . .  +~n] - 5[~'] . . . . .  8[~']}. (B13) 

From this expansion only a finite number of terms are needed to calculate the 
averages of operators that are finite-order multinomials of the canonical opera- 
tors. As an example, the model energy of Eq. (14) is in this representation 

T = ~ f ~y[¢]~ptp ~-~ 6[~]. (B14) 

The full action functional is now (cf. Sect. 6) 

Stationary conditions give in this representation the equations of  motion 

6/7 
ip[~] = 6 ~ [ ~ 1 '  

6/7 (B16) 
i~[¢] - -  _ _ _  6~,[~] 

The solutions corresponding to the ground state are obtained from these 
equations by setting the left-hand sides equal to zero• 
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Appendix C. Wick theorem 

It is sufficient to prove the Wick theorem of Eqs. (54-55) for fermionic 
single-particle operators only. The bosonic operators completely factorize from 
the fermionic ones, and for that case the Wick theorem was proven in Ref. [22]. 
For any mixture of particles the rule will then be given in the present paper, 
assuming the model state to be the vacuum for all bosonic sectors. 

Let I = ( i l ,  i2, i 3 , . . .  ), J = (Jl,Jz,J3 . . . .  ), where all il or Jt are {0, 1}, and 
C~l : :, ~il ~ ~ i2~ ~i3 . . . 

1 t't2 t~3 

• ,~s3,¢z,,J, (C1) 
C j ~ .  • ~ 3 ~ 2 ~ 1  • 

On arranging operators belonging to same orbitals into pairs it follows 

C s C ~  - ~ :  .,Jl . t il .~t .Jz ,, tiz,~ . . . 

where the sign factor is 

K = qyqu( - 1)ti~ +:I)A + (iz +J2)(Jl +J2) + (i3 +J3)(Jl +J2 +J3)+ " " 

Using the elementar3) normal-ordering rule 
r n i n ( i l  , J l  ) 

,,, a t q  - k l a A  - k l  a~a~l i' = ~ l ~ k l q i l , j l  l l , 
k l = O  

the pairs in the product C s C ~  can be normal-ordered. Shifting all the annihila- 
tion operators then to the right one obtains 

C s C ~  = K '  E a?l i l -k 'a t2 i2-k2  " " a~2-/~2a~ ~ -k~, (C2) 
{kl} 

where the sign factor is simplified into the form 

K '  -= q i i , j  I q i 2 , j z  " " " ~ k  ~ q k  z " " " rb.Ktls, x (  --  1) i2jl + i3 (Jl +J2) + i4(J1 +J2 +J3) +" ""  

• ( - - 1 )  : 2 i ~ + j 3 ( i ' + i z ) + s ' u ' + i 2 + i 3 ) + ' ( - 1 )  k ' ¢ i~+A)+kz ( i '+ i z+ j '+s2 )+  (C3) 

Operators with compound indices are calculated from the definition 

<olc _  <olc c  = <01 . . . .  J2"tlJl"Ttklftafk2"'" 
~ 2 ~ 1 ~ 1  ~ 2  

which gives, after reordering, 

C s _ K  . . . .  a:22-/~2a~-/q( _ l)k2~s, + ~)+ k3~:~ +:2 + ~, +~2)+. • • (C4) 

In the same fashion one obtains 

C ~ _ i ~ = a ~ i ~ - k ~ a ~ i 2 - ~ 2 . . .  ( - 1 )  k 2 ( i ' + k O + k 3 ( i ' + i 2 + k ' + k ~ ) +  (C5) 

Combining Eqs. (C4-C5) it is then found 

C ? I _  K C j _  K : a?l q - k , a t 2 i 2 - k 2  . . . ajz2-/~2a~ - k , (  _ l)k~(i, + A ) + k 3 ( f i  + i2 +Jl + . ]2 )+ ' "  

On comparing Eqs. (C2-C3) with (C6) one finds 

Gc*,  = Y, c*,_ s), 
{k~) 

where the sign factor is 

Z K (I, J )  = q i  1 , J l  q i 2 , j  2 "  " " q k  1 q k  2 "  " " I~ I ,K~J ,  K ( - -  1) E, ¢,, ilJm ( - -  1) E~ k, ~# +j, ). 

(C6) 

(C7) 
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But  ( - 1)X~ ~m ,~i,, = ( _ 1)N~N, +Zt i~jt = eI, S Ib %Jr. There fore  

ZK(I~ J) = ~I, Jr/I,K~J,K ~ (qkl~kl,il~kl,Jl)" 
l 

A closer inspection shows that for all possible configurations qklqkt.#q~j~ = q~  
T h e r e f o r e  the p r o d u c t  o f  all  these  fac tors  is r/K, w h i c h  f inal ly p r o v e s  Eqs .  
( 5 4 - 5 5 )  o f  the  m a i n  text.  

Acknowledgements. I am indebted to my long-time collaborators R. F. Bishop and E. Pajanne and 
to Prof. H. G. Kiimmel for numerous useful discussions on the CC methods. 
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